179 research outputs found

    The gravitational lensing signatures of BOSS voids in the cosmic microwave background

    Get PDF
    We report a 5.3σ5.3\sigma detection of the gravitational lensing effect of cosmic voids from the Baryon Oscillation Spectroscopic (BOSS) Data Release 12 seen in the PlanckPlanck 2018 cosmic microwave background (CMB) lensing convergence map. To make this detection, we introduce new optimal techniques for void stacking and filtering of the CMB maps, such as binning voids by a combination of their observed galaxy density and size to separate those with distinctive lensing signatures. We calibrate theoretical expectations for the void-lensing signal using mock catalogs generated in a suite of 108 full-sky lensing simulations from Takahashi et al. (2017). Relative to these templates, we measure the lensing amplitude parameter in the data to be AL=1.10±0.21A_L=1.10 \pm 0.21 using a matched-filter stacking technique, and confirm it using an alternative Wiener filtering method. We demonstrate that the result is robust against thermal Sunyaev-Zel'dovich contamination and other sources of systematics. We use the lensing measurements to test the relationship between the matter and galaxy distributions within voids, and show that the assumption of linear bias with a value consistent with galaxy clustering results is discrepant with observation at 3σ\sim 3\sigma; we explain why such a result is consistent with simulations and previous results, and is expected as a consequence of void selection effects. We forecast the potential for void-CMB lensing measurements in future data from the Advanced ACT, Simons Observatory and CMB-S4 experiments, showing that, for the same number of voids, the achievable precision improves by a factor of more than two compared to PlanckPlanck.Comment: 20 pages, 8 figures, 3 tables; addressed minor comments from the reviewer; accepted for publication in Ap

    TB as a cause of hospitalization and in-hospital mortality among people living with HIV worldwide: a systematic review and meta-analysis.

    Get PDF
    INTRODUCTION: Despite significant progress in improving access to antiretroviral therapy over the past decade, substantial numbers of people living with HIV (PLHIV) in all regions continue to experience severe illness and require hospitalization. We undertook a global review assessing the proportion of hospitalizations and in-hospital deaths because of tuberculosis (TB) in PLHIV. METHODS: Seven databases were searched to identify studies reporting causes of hospitalizations among PLHIV from 1 January 2007 to 31 January 2015 irrespective of age, geographical region or language. The proportion of hospitalizations and in-hospital mortality attributable to TB was estimated using random effects meta-analysis. RESULTS: From an initial screen of 9049 records, 66 studies were identified, providing data on 35,845 adults and 2792 children across 42 countries. Overall, 17.7% (95% CI 16.0 to 20.2%) of all adult hospitalizations were because of TB, making it the leading cause of hospitalization overall; the proportion of adult hospitalizations because of TB exceeded 10% in all regions except the European region. Of all paediatric hospitalizations, 10.8% (95% CI 7.6 to 13.9%) were because of TB. There was insufficient data among children for analysis by region. In-hospital mortality attributable to TB was 24.9% (95% CI 19.0 to 30.8%) among adults and 30.1% (95% CI 11.2 to 48.9%) among children. DISCUSSION: TB remains a leading cause of hospitalization and in-hospital death among adults and children living with HIV worldwide

    CMB-S4 Science Book, First Edition

    Full text link
    This book lays out the scientific goals to be addressed by the next-generation ground-based cosmic microwave background experiment, CMB-S4, envisioned to consist of dedicated telescopes at the South Pole, the high Chilean Atacama plateau and possibly a northern hemisphere site, all equipped with new superconducting cameras. CMB-S4 will dramatically advance cosmological studies by crossing critical thresholds in the search for the B-mode polarization signature of primordial gravitational waves, in the determination of the number and masses of the neutrinos, in the search for evidence of new light relics, in constraining the nature of dark energy, and in testing general relativity on large scales

    Making maps of cosmic microwave background polarization for B-mode studies: The POLARBEAR example

    Get PDF
    Analysis of cosmic microwave background (CMB) datasets typically requires some filtering of the raw time-ordered data. For instance, in the context of ground-based observations, filtering is frequently used to minimize the impact of low frequency noise, atmospheric contributions and/or scan synchronous signals on the resulting maps. In this work we have explicitly constructed a general filtering operator, which can unambiguously remove any set of unwanted modes in the data, and then amend the map-making procedure in order to incorporate and correct for it. We show that such an approach is mathematically equivalent to the solution of a problem in which the sky signal and unwanted modes are estimated simultaneously and the latter are marginalized over. We investigated the conditions under which this amended map-making procedure can render an unbiased estimate of the sky signal in realistic circumstances. We then discuss the potential implications of these observations on the choice of map-making and power spectrum estimation approaches in the context of B-mode polarization studies. Specifically, we have studied the effects of time-domain filtering on the noise correlation structure in the map domain, as well as impact it may haveon the performance of the popular pseudo-spectrum estimators. We conclude that although maps produced by the proposed estimators arguably provide the most faithful representation of the sky possible given the data, they may not straightforwardly lead to the best constraints on the power spectra of the underlying sky signal and special care may need to be taken to ensure this is the case. By contrast, simplified map-makers which do not explicitly correct for time-domain filtering, but leave it to subsequent steps in the data analysis, may perform equally well and be easier and faster to implement. We focused on polarization-sensitive measurements targeting the B-mode component of the CMB signal and apply the proposed methods to realistic simulations based on characteristics of an actual CMB polarization experiment, POLARBEAR. Our analysis and conclusions are however more generally applicable. \ua9 ESO, 2017

    CMB-S4: Forecasting Constraints on Primordial Gravitational Waves

    Full text link
    CMB-S4---the next-generation ground-based cosmic microwave background (CMB) experiment---is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semi-analytic projection tool, targeted explicitly towards optimizing constraints on the tensor-to-scalar ratio, rr, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2--3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments given a desired scientific goal. To form a closed-loop process, we couple this semi-analytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r>0.003r > 0.003 at greater than 5σ5\sigma, or, in the absence of a detection, of reaching an upper limit of r<0.001r < 0.001 at 95%95\% CL.Comment: 24 pages, 8 figures, 9 tables, submitted to ApJ. arXiv admin note: text overlap with arXiv:1907.0447

    In-situ estimation of ice crystal properties at the South Pole using LED calibration data from the IceCube Neutrino Observatory

    Get PDF
    The IceCube Neutrino Observatory instruments about 1 km3 of deep, glacial ice at the geographic South Pole using 5160 photomultipliers to detect Cherenkov light emitted by charged relativistic particles. A unexpected light propagation effect observed by the experiment is an anisotropic attenuation, which is aligned with the local flow direction of the ice. Birefringent light propagation has been examined as a possible explanation for this effect. The predictions of a first-principles birefringence model developed for this purpose, in particular curved light trajectories resulting from asymmetric diffusion, provide a qualitatively good match to the main features of the data. This in turn allows us to deduce ice crystal properties. Since the wavelength of the detected light is short compared to the crystal size, these crystal properties do not only include the crystal orientation fabric, but also the average crystal size and shape, as a function of depth. By adding small empirical corrections to this first-principles model, a quantitatively accurate description of the optical properties of the IceCube glacial ice is obtained. In this paper, we present the experimental signature of ice optical anisotropy observed in IceCube LED calibration data, the theory and parametrization of the birefringence effect, the fitting procedures of these parameterizations to experimental data as well as the inferred crystal properties.</p

    TXS 0506+056 with Updated IceCube Data

    Get PDF
    Past results from the IceCube Collaboration have suggested that the blazar TXS 0506+056 is a potential source of astrophysical neutrinos. However, in the years since there have been numerous updates to event processing and reconstruction, as well as improvements to the statistical methods used to search for astrophysical neutrino sources. These improvements in combination with additional years of data have resulted in the identification of NGC 1068 as a second neutrino source candidate. This talk will re-examine time-dependent neutrino emission from TXS 0506+056 using the most recent northern-sky data sample that was used in the analysis of NGC 1068. The results of using this updated data sample to obtain a significance and flux fit for the 2014 TXS 0506+056 "untriggered" neutrino flare are reported
    corecore